ence Foundation, Spezialforschungsbereich Elektroaktive Stoffe, for supporting this work.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: NA1381). Services for accessing these data are described at the back of the journal.

References

- Adachi, C., Tsutsui, T. & Saito, S. (1990). Appl. Phys. Lett. 57, 531-533.
- Brock, C. P., Naae, D. G., Goodhand, N. & Hamor, T. A. (1978). Acta Cryst. B34, 3691–3696.
- Dahl, T. (1994). Acta Chem. Scand. 48, 95-106.
- Frisch, M. J., Trucks, G. W., Schlegel, H. B., Gill, P. M. W., Johnson, B. G., Robb, M. A., Cheeseman, J. R., Keith, T. A., Petersson, G. A., Montgomery, J. A., Raghavachari, K., Al-Laham, M. A., Zakrzewski, V. G., Ortiz, J. V., Foresman, J. B., Cioslowski, J., Stefanov, B. B., Nanayakkara, A., Challalcombe, M., Peng, C. Y., Ayala, P. Y., Chen, W., Wong, M. W., Andrews, J. L., Replogle, E. S., Gomperts, R., Martin, R. L., Fox, D. L., Binkley, J. S., Defrees, D. J., Baker, J., Stewart, J. P., Head-Gordon, M., Gonzalez, C. & Pople, J. A. (1995). *GAUSSIAN*94. Revision A1. Gaussian Inc., Pittsburgh, Pennsylvania, USA.

Goodhand, N. & Hamor, T. A. (1978). Acta Cryst. B34, 1644-1647.

- Naae, D. G. (1979). Acta Cryst. B35, 2765-2768.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
- Siemens (1995). SHELXTL. XP Program for Molecular Graphics. Version 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996a). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Siemens (1996b). XSCANS. X-ray Single Crystal Analysis Software. Version 2.2. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
- Winkler, B. (1997). PhD thesis, Technical University of Graz, Austria.
- Winkler, B., Meghdadi, F., Tasch, S., Müllner, R., Resel, R., Saf, R., Leising, G. & Stelzer, F. (1998). Opt. Mater. 9, 159-162.

Acta Cryst. (1999). C55, 695-696

Ethylenebis(phosphonic acid)

JOACHIM BRUCKMANN, CARL KRÜGER, CHRISTIAN W. LEHMANN, WALTER LEITNER, JÖRG RUST AND CHRISTIAN SIX

Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany. E-mail: rust@mpi-muelheim.mpg.de

(Received 23 July 1998; accepted 3 December 1998)

Abstract

The as yet structurally uncharacterized title compound, $C_2H_8O_4P_2$, was isolated as a by-product of the synthesis of 1,2-bis(dimethylphosphino)ethane (dmpe) from 1,2-

bis(dichlorophosphino)ethane. In the crystal structure, which is characterized by strong intermolecular O— $H \cdots Osp^2$ hydrogen bonds, only the R^*, S^* diastereomer is found. The molecule is located on a center of inversion intersecting the central C—C bond, thereby preserving the molecular C_i symmetry.

Comment

Phosphonic acid is known to form strong hydrogen bonds which result in enhanced viscosity with increasing concentration. In molecular crystals, hydrogen bonds are among the most important structure-determining interactions. The structure of methylenebis(phosphonic acid) (King *et al.*, 1996) is characterized by intermolecular hydrogen-bonded molecules, as is the structure of ethylenebis(phosphonic acid), (I), reported here.

In the monoclinic unit cell, the central C-C bond of ethylenebis(phosphonic acid) is located at a center of inversion and, as a result, only one-half of a symmetrically independent molecule needs to be discussed. The geometry at the P atom is very similar to that found in methylenebis(phosphonic acid), which has two independent P atoms in the asymmetric unit. Due to the presence of electron-withdrawing O atoms at the P atom, the P-C bond is shortened to 1.784(2) Å. All H atoms have been located. An H atom is located at only one of the O atoms, and the mesomeric structure proposed for the liquid state is not present in the solid. The intermolecular distance between O atoms involved in hydrogen bonding is 2.511 (3) Å $[O2-H2 0.94 (4), H2 \cdots O1^{ii}]$ 1.58 (4) Å and O2—H2···O1ⁱⁱ 171 (4)°; symmetry code: (ii) $\frac{1}{2} + x$, $\frac{3}{2} - y$, $z - \frac{1}{2}$]. This affords a co-operative chain of $\cdots O = P - OH \cdots$ hydrogen bonds linking both ends

Fig. 1. View of the title compound with displacement ellipsoids at the 50% probability level. H atoms are shown as circles of an arbitrary radius. [Symmetry code: (i) -x, 1 - y, 1 - z.]

CI

01

02 P1

of the molecule into two-dimensional layers parallel to (101). These layers have an $H3 \cdots O2^{iii}$ separation of 2.72 (3) Å, with a P—H3 $\cdots O2^{iii}$ angle of 112.5 (16)° [symmetry code: (iii) x - 1, y, z]. A comparison with 259 P—H \cdots O intermolecular contacts between 2.2 and 3.5 Å contained in the Cambridge Structural Database Database (Allen & Kennard, 1993) reveals that this contact is on the borderline of the excluded region (Jeffrey & Saenger, 1991).

Experimental

Ethylenebis(phosphonic acid) was formed in small quantities during a synthesis of the chelating phosphane 1,2-bis(dimethylphosphino)ethane (Burt *et al.*, 1979) by hydrolysis of the precursor 1,2-bis(dichlorophosphino)ethane due to the presence of adventitious water. While the R^*, S^* diastereomer has crystallized here, there is no evidence that this diastereomer was formed preferentially over the R^*, R^* diastereomer, which can easily interconvert via the tautomeric equilibrium with 1,2-bis-(dihydroxyphosphino)ethane. Crystals of the title compound were obtained from a hexane/pentane solution.

Crystal data

 $C_2H_8O_4P_2$ Mo $K\alpha$ radiation $M_r = 158.02$ $\lambda = 0.71069 \text{ Å}$ Cell parameters from 25 Monoclinic $P2_1/n$ reflections $\theta = 13.5 - 29.9^{\circ}$ a = 4.8912 (6) Å $\mu = 0.608 \text{ mm}^{-1}$ b = 11.6238(12) Å T = 293 Kc = 5.6581(3) Å Tabular prism $\beta = 91.279(6)^{\circ}$ V = 321.61 (6) Å³ Yellow Z = 2 $D_x = 1.632 \text{ Mg m}^{-3}$ D_m not measured

Data collection

Enraf-Nonius CAD-4863diffractometerI $\omega - 2\theta$ scans θ_{max} Absorption correction:h = ψ scan (Enraf-Nonius,k =1995)l = $T_{min} = 0.804$, $T_{max} = 0.859$ 3 st936 measured reflectionsfin936 independent reflectionsin

Refinement

Refinement on F^2 R(F) = 0.038 $wR(F^2) = 0.118$ S = 1.286936 reflections 53 parameters All H atoms refined $w = 1/[\sigma^2(F_o^2) + (0.0542P)^2 + 0.2082P]$ + 0.2082P]where $P = (F_o^2 + 2F_c^2)/3$

 $\theta = 15.5-29.9$ $\mu = 0.608 \text{ mm}^{-1}$ T = 293 KTabular prism $0.53 \times 0.42 \times 0.25 \text{ mm}$ Yellow 863 reflections with $I > 2\sigma(I)$ $\theta_{\text{max}} = 29.95^{\circ}$ $h = -6 \rightarrow 6$ $k = 0 \rightarrow 16$ $l = 0 \rightarrow 7$ i9 3 standard reflections
frequency: 30 min
intensity decay: 17%

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters (Å²)

$$U_{\rm eq} = (1/3) \sum_i \sum_j U^{ij} a^i a^j \mathbf{a}_i . \mathbf{a}_j$$

х	у	z	U_{eq}
-0.0184(5)	0.56349 (17)	0.5285 (4)	0.0323 (4)
-0.0304 (4)	0.77739 (13)	0.3258 (3)	0.0398 (4)
0.3284 (4)	0.62853 (17)	0.2035 (4)	0.0454 (5)
0.03203 (11)	0.65438 (4)	0.27913 (9)	0.0279 (2)

Table 2. Selected geometric parameters (Å, °)

	0		
C1-C1	1.522 (4)	O2—P1	1.5501 (18)
C1-P1	1.784 (2)	O2—H2	0.94 (4)
O1—P1	1.4871 (16)	P1H3	1.36(3)
C1'C1P1	112.82 (18)	O2—P1—C1	104.50(11)
P1—O2—H2	121 (3)	O1-P1-H3	113.0 (12)
O1—P1—O2	115.63 (11)	O2-P1-H3	105.4 (12)
01-P1-C1	113.35 (9)	C1—P1—H3	103.9 (13)

Symmetry code: (i) -x, 1 - y, 1 - z.

H atoms were located from difference Fourier synthesis and were refined isotropically.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1995). Cell refinement: CAD-4 EXPRESS. Data reduction: DATAP (Coppens et al., 1965). Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997). Molecular graphics: ORTEPII (Johnson, 1976).

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1229). Services for accessing these data are described at the back of the journal.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 31-37.
- Burt, R. J., Chatt, J., Hussain, W. & Leigh, G. J. (1979). J. Organomet. Chem. 182, 203-206.
- Coppens, P., Leiserowitz, L. & Rabinovich, D. (1965). Acta Cryst. 18, 4656–4663.
- Enraf-Nonius (1995). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
- Jeffrey, G. A. & Saenger, W. (1991). Hydrogen Bonding in Biological Structures. Berlin: Springer-Verlag.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- King, C., Roundhill, D. M. & Fronczek, F. R. (1996). *Inorg. Chem.* 25, 1290–1292.
- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
- Sheldrick, G. M. (1997). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

 $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.286 \text{ e } \text{\AA}^{-3}$ $\Delta\rho_{min} = -0.539 \text{ e } \text{\AA}^{-3}$ Extinction correction: none Scattering factors from International Tables for Crystallography (Vol. C)